IMPLEMENTASI SUPPORT VECTOR MACHINE DALAM PREDIKSI HARGA RUMAH

Penulis

  • I Wayan Pio Pratama Politeknik eLBajo Commodus, Labuan Bajo

DOI:

https://doi.org/10.63604/javok.v2i2.54

Kata Kunci:

Support Vector Machine, Harga Rumah, Outlier, Analisis Regresi, Multikolinearitas., Support Vector Machine, Harga Rumah, Outlier, Analisis Regresi, Multikolinearitas, Support Vector Machine Harga Rumah, Outlier, Analisis Regresi, Multikolinearitas, Support Vector Machine, Harga Rumah, Outlier, Analisis Regresi, Multikolinearitas

Abstrak

Penelitian ini bertujuan untuk memprediksi harga rumah di Amerika Serikat berdasarkan fitur-fitur seperti Avg. Area Income, Avg. Area House Age, Avg. Number of Rooms, dan Area Population. Dataset yang digunakan terdiri dari beberapa ribu entri tanpa ada missing value. Melalui eksplorasi data awal, ditemukan adanya korelasi yang signifikan antara sejumlah fitur dengan harga rumah. Outlier dianalisis dan dipertimbangkan dalam proses pemodelan. Algoritma Support Vector Machine (SVM) dengan berbagai kernel diaplikasikan, di mana kernel Radial Basis Function (RBF) menunjukkan performa terbaik dan berhasil menjelaskan sebesar 70,78% variasi harga rumah. Hasil penelitian ini menunjukkan potensi algoritma SVM dalam prediksi harga properti dan memberikan wawasan untuk analisis properti lebih lanjut.

Referensi

Alghushairy, O., Alsini, R., Soule, T., & Ma, X. (2021). A review of local outlier factor algorithms for outlier detection in big data streams. Big Data and Cognitive Computing, 5(1), 1–24. https://doi.org/10.3390/bdcc5010001

Alita, D., Fernando, Y., & Sulistiani, H. (2020). Implementasi Algoritma Multiclass Svm Pada Opini Publik Berbahasa Indonesia Di Twitter. Jurnal Tekno Kompak, 14(2), 86. https://doi.org/10.33365/jtk.v14i2.792

Azizah, N. (2017). Nur Azizah, 2017 IMPLEMENTASI D AN ANALISA WAKTU KOMPUTASI PAD A ALGORITMA RAND OM FOREST D ENGAN PARALLEL COMPUTING D I R Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu. 1–5.

Baak, M., Koopman, R., Snoek, H., & Klous, S. (2020). A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics. Computational Statistics and Data Analysis, 152, 107043. https://doi.org/10.1016/j.csda.2020.107043

Bank BTN. (2021). Riset: Harga Rumah Naik karena Permintaan Meningkat di Masa Pandemi. https://www.btn.co.id/en/Conventional/Informasi-yang-Anda-Butuhkan-Saat-Ini/Info/Artikel---Index-Harga-Rumah-HPI

El Morr, C., Jammal, M., Ali-Hassan, H., & El-Hallak, W. (2022). Support Vector Machine. International Series in Operations Research and Management Science, 334, 385–411. https://doi.org/10.1007/978-3-031-16990-8_13

EMOTIVEPRO. (2019). Raw EEG. https://emotiv.gitbook.io/emotivpro/data_streams/raw_eeg

Fondy, H. W., Fajar, M., & Musdar, I. A. (2019). Implementasi Teori Support Vecto R Machine Untuk Memprediksi Harga Penjualan Laptop Asus. KHARISMA Tech, 1–9. https://jurnal.kharisma.ac.id/kharismatech/article/view/238%0Ahttps://jurnal.kharisma.ac.id/kharismatech/article/download/238/132

Huang, K., & Putra Purnoma, E. (2022). Support Vector Machine Algorithm. https://sis.binus.ac.id/2022/02/14/support-vector-machine-algorithm/

Jadhav, A., Pramod, D., & Ramanathan, K. (2019). Comparison of Performance of Data Imputation Methods for Numeric Dataset. Applied Artificial Intelligence, 33(10), 913–933. https://doi.org/10.1080/08839514.2019.1637138

Kementerian PUPR. (2019). Kementerian PUPR Siapkan Skema Penyediaan Rumah Bagi Generasi Milenial. https://pu.go.id/berita/kementerian-pupr-siapkan-skema-penyediaan-rumah-bagi-generasi-milenial

Lumbanraja, F. R., Saputra, R. A., Muludi, K., Hijriani, A., & Junaidi, A. (2021). Implementasi Support Vector Machine Dalam Memprediksi Harga Rumah Pada Perumahan Di Kota Bandar Lampung. Jurnal Pepadun, 2(3), 327–335. https://doi.org/10.23960/pepadun.v2i3.90

Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Computer Engineering, Science and System Journal, 4(1), 78. https://doi.org/10.24114/cess.v4i1.11458

Ni Komang Sariasih, Komang Fridagustina Adnantara, & Laras Oktaviani. (2021). Pengaruh Rasio Likuiditas, Solvabilitas, Profitabilitas Dan Aktivitas, Terhadap Kebijakan Dividen Pada Perusahaan Property, Real Estate, and Building. Journal Research of Accounting, 3(1), 76–92. https://doi.org/10.51713/jarac.v3i1.46

Pedregosa, Fabian Varoquaux, G., Gramfort, A., & Michel, V. (2011). Univariate feature selection. https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection

Prabhu, D. (2023). No Title. https://www.kaggle.com/datasets/darshanprabhu09/housing-dataset-of-5000-people-staying-in-usa

Quang, T., Minh, N., Hy, D., & Bo, M. (2020). Housing Price Prediction via Improved Machine Learning Techniques. Procedia Computer Science, 174(2019), 433–442. https://doi.org/10.1016/j.procs.2020.06.111

Raihan-Al-Masud, M., & Rubaiyat Hossain Mondal, M. (2020). Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms. PLoS ONE, 15(2), 1–21. https://doi.org/10.1371/journal.pone.0228422

Raja, P. S., & Thangavel, K. (2020). Missing value imputation using unsupervised machine learning techniques. In Soft Computing (Vol. 24, Issue 6). Springer Berlin Heidelberg. https://doi.org/10.1007/s00500-019-04199-6

Ruhulessin, M. F. (2022). Walau Harga Rumah Terus Naik, Bubble Properti Diprediksi Tak Akan Terjadi. https://www.kompas.com/properti/read/2022/02/18/090000421/walau-harga-rumah-terus-naik-bubble-properti-diprediksi-tak-akan?page=all

SMF IT. (2017). Faktor-Faktor Penting yang Menyebabkan Harga Rumah Kian Melambung. https://www.hfis-smf.co.id/2017/11/faktor-faktor-penting-yang-menyebabkan-harga-rumah-kian-melambung/

Wahanani, H. E., Prami Swari, M. H., & Akbar, F. A. (2020). Case based Reasoning Prediksi Waktu Studi Mahasiswa Menggunakan Metode Euclidean Distance dan Normalisasi Min-Max. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1279. https://doi.org/10.25126/jtiik.2020763880

Zhang, Y., Huang, J., Zhang, J., Liu, S., & Shorman, S. (2022). Analysis and prediction of second-hand house price based on random forest. Applied Mathematics and Nonlinear Sciences, 7(1), 27–42. https://doi.org/10.2478/amns.2022.1.00052

Unduhan

Diterbitkan

2023-12-29

Cara Mengutip

Pio Pratama, I. W. (2023). IMPLEMENTASI SUPPORT VECTOR MACHINE DALAM PREDIKSI HARGA RUMAH. JURNAL AKADEMISI VOKASI, 2(2), 101–113. https://doi.org/10.63604/javok.v2i2.54

Terbitan

Bagian

Volume 2 Nomor 2 (Desember 2023)